Edge detection of gravity anomaly sources via the tilt angle, total horizontal derivative, total horizontal derivative of the tilt angle and new normalized total horizontal derivative

نویسنده

  • A Askari
چکیده

In this paper the application of edge detection techniques to gravity data are described. Edge enhancement in potential-field data helps geologic interpretation. There exist several methods for enhancing edges, such as tilt angle, and the derivative of tilt angle. Most of these methods are high-pass filters based on the horizontal or vertical derivatives of the field. To determine the filters new normalized total horizontal derivative (NNTHD), normalized horizontal derivative (NTHD), total horizontal derivative (TDX) and tilt angle as an edge detector (THDR), a computer code in Matlab was prepared. The filter has been tested by comparison with related high-pass filters with synthetic data and measured data; it gives outstanding results for the data sets employed for which the NNTHD method can make large and small amplitudes of source edges equally visible, with more detail wherever the data are relatively smooth. NNTHD, a new edge-detection filter, is based on ratios of horizontal derivative to the mean of the nearby horizontal derivatives. Compared with other filters, the NNTHD filter produces more detailed results. The advantage of the NNTHD method in the recognition of source edges is due to the fact that it can make the strong and weak amplitude edges visible simultaneously, and can bring out more details. The advantage of the NNTHD method is most obvious in the regions where the data are relatively smooth. As the standard deviation of this method (0.1784) is greater than the NTHD method (0.0710), this method displays the gravity anomalies more clearly than the NTHD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of derivative-based methods by normalized standard deviation approach for edge detection of gravity anomalies

This paper describes the application of the so-called normalized standard deviation (NSTD) method to detect edges of gravity anomalies. Using derivative-based methods enhances the anomaly edges, leading to significant improvement of the interpretation of the geological features. There are many methods for enhancing the edges, most of which are high-pass filters based on the horizontal or vertic...

متن کامل

Edge detection in gravity field of the Gheshm sedimentary basin

Edge detection and edge enhancement techniques play an essential role in interpreting potential field data. This paper describes the application of various edge detection techniques to gravity data in order to delineate the edges of subsurface structures. The edge detection methods comprise analytic signal, total horizontal derivative (THDR), theta angle, tilt angle, hyperbolic of tilt angle (H...

متن کامل

Interpretation of gravity anomalies via terracing method of the profile curvature

One of the main goals of interpretation of gravity data is to detect location and edges of the anomalies. Edge detection of gravity anomalies is carried out by different methods. Terracing of the data is one of the approaches that help the interpreter to achieve appropriate results of edge detection. This goal becomes a complex task when the gravity anomalies have smooth borders due to gradual ...

متن کامل

بررسی های باستان سنجی در تپه حصار دامغان با استفاده از روش های گرانی سنجی و مغناطیس سنجی

Research and exploration of the remaining relics from the past has special importance in identifying the date, history and the identity of a country. Development and the advancement of human knowledge have offered new methods for the detection archaeological sites that by using them without the need for excavation and destruction of antiquities can be found useful information. Today, the non-de...

متن کامل

Application of surface-derived attributes in determining boundaries of potential-field sources

This paper describes an edge detection method based on surface-derived attributes. The surface-derived attributes are widely used in the interpretation ofseismic datain two main categories: (1) derivative attributes including the dip angle and the azimuth; (2) derivative attributes including curvature attributes.    In general, the magnitude of the normal curvature of a surface (curvature attri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014